
Making smart contract smarter
Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, Aquinas Hobor

<EE817/IS893: Blockchain and Cryptocurrency>

Presented by Daejun Kim (2019. 05)

Index

 Background

 Introduction

 Security bugs in Ethereum

 Towards a better design

 The 𝑂𝑦𝑒𝑛𝑡𝑒 Tool (compare with teEther)

Conclusion

 Future Works

Appendix

2 / 74

Background

3 / 74

Trend

• Academic Pedigree

*Image from Narayanan, Arvind, and Jeremy Clark. "Bitcoin's academic pedigree." Communications of the
ACM 60.12 (2017): 36-45. 4 / 74

Trend

[2016]

- Luu, Loi, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena and Aquinas Hobor.

"Making smart contracts smarter." ACM CCS.

[2017]

- Trailofbits, https://github.com/trailofbits/manticore

- Trailofbits, https://github.com/ConsenSys/mythril-classic

5 / 74

Trend

[2018] - Cont’d

- Yi Zhou, Deepak Kumar, Surya Bakshi, Joshua Mason, Andrew Miller, and Mi

chael Bailey. "Erays: reverse engineering ethereum's opaque smart contracts.“,

USENIX

- Sukrit Kalra, Seep Goel, Mohan Dhawan and Subodh Sharma. "Zeus: Analyz

ing safety of smart contracts.“, NDSS

- Krupp Johannes, and Christian Rossow. "teether: Gnawing at ethereum to a

utomatically exploit smart contracts.“, USENIX

6 / 74

Trend

[2018]

- Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Buenzli, F., & Vechev,

M. “Securify: Practical security analysis of smart contracts.” ACM SIGSAC

- Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I., Takhaviev, R., Marchenko, E.,

& Alexandrov, Y. “Smartcheck: Static analysis of ethereum smart contracts.”.

WETSEB

7 / 74

Trend

*Image from “Smart Contract 분석과 PL”, Jonghyup Lee

• Symbolic Execution (This paper also uses the same methodology.)

• Slow…. But, targeting smart contracts is fast!

8 / 74

Ethereum

• “Ethereum is an open blockchain platform that lets anyone build and
use decentralized applications that run on blockchain technology.” (aka.
2nd generation cryptocurrency)

It can be a platform! <Smart contract>

Issued date 2015. 07. Market capitalization ≈$18 billion (2019. 04)

Block Time About 12 seconds Block reward 5 ETH (Ethereum)

Consensus Algorithm PoW

*Market capitalization from Coinmarketcap (https://coinmarketcap.com)

9 / 74

Smart contract

• “A smart contract is a computerized transaction protocol that executes
the terms of a contract.” (Szabo, Nick. "Smart contracts." Unpublished
manuscript (1994))

• Today, this is also called DApp (Decentralized application, Distributed
application)

$

Alice Bob

10 / 74

Smart contract

• In Ethereum (Cont’d)

• This program is run on block-chain nodes.

• Executed on incoming transactions

• from, to, value (ETH amount), gas (fee), data (argv)

• “Conceptually, Ethereum can be viewed as a transaction based
state-machine”

• Turing complete (Turing, Alan. "On Computable Numbers, with an
Application to the Entscheidungs problem, 1936." B. Jack
Copeland (2004): 58.)

11 / 74

Smart contract

• In Ethereum

• Written in solidity

• object-oriented, high-level language for implementing smart
contracts

• influenced by C++, Python and JavaScript and is designed to
target the Ethereum Virtual Machine (EVM).

• Usage

• voting, crowdfunding, blind auctions, and multi-signature wallets.

• Cannot patch

12 / 74

Smart contract

• Gas (Cont’d)

• “Gas is a unit that measures the amount of computational effort that
it will take to execute certain operations.”

$ + (gas)

Alice Bob

13 / 74

Smart contract

• Gas (Cont’d)

• Fee (Gas) = Gas limit * Gas price (FYI. 1 ETH = 1,000,000,000 𝑔𝑤𝑒𝑖)

• Gas Limit: Number of gases required for operation

• Gas Price: Literally, gas price.

• Affects mining time / order.

𝑇𝑎
≈ 𝑀𝑎𝑥
≈ 𝑀𝑖𝑛

𝑇𝑏
𝑠𝑢𝑖𝑡

If 𝑠𝑎𝑚𝑒 𝐺𝑎𝑠 𝑃𝑟𝑖𝑐𝑒, Gas Limit comparison

𝑇𝑎
1 ∗ 109

𝑇𝑏
2 ∗ 109

If 𝑠𝑎𝑚𝑒 𝐺𝑎𝑠 𝐿𝑖𝑚𝑖𝑡, Gas Price comparison

14 / 74

Smart contract

• Gas

• But, You do not consume too much gas in one transaction.

• Block Gas Limit: The sum of the gases that can be contained in a
block.

• If fails, the state (σ) is reverted to the initial state and the sender
pays all gas limit to the miner. (counter-measure against resource-
exhausting attacks)

(gas consume)

Alice BobFail

15 / 74

Smart contract

• Ethereum Virtual Machine (EVM)

EVM Code on Blockchain

Program
Counter

Gas

Stack
256 bits * 1024

Memory
linear memory

Storage
key-value store
(256 – 256 bits)

Persistent

Volatile

16 / 74

Smart contract

• Ethereum Virtual Machine (EVM)

• No register

• Stack: PUSH/POP/COPY/SWAP

• Memory: MSTORE/MLOAD

• Storage: SSTORE/SLOAD

• Gas consumes per opcode.

EVM Code example

Byte Code | Assembly
==================
6009 | PUSH1 09
34 | CALLVALUE
6007 | PUSH1 07
57 | JUMPI
00 | STOP
5b | JUMPDEST
56 | JUMP
5b | JUMPDEST
00 | STOP

Gas consumes

*Gas consumes: https://docs.google.com/spreadsheets/d/1n6mRqkBz3iWcOlRem_mO09GtSKEKrAsfO7Frgx18pNU/edit
17 / 74

Introduction

18 / 74

Introduction

• Goal & Approach: Finding bugs in Ethereum Smart Contract via
symbolic execution tool.

19 / 74

Introduction

• Contribution

• Introducing several new classes of security bugs in the Ethereum
Smart Contract

• Formalize the “lightweight” semantics of Ethereum smart contract
and propose recommendations as solutions for the documented
bugs.

• make & run 𝑂𝑦𝑒𝑛𝑡𝑒, a symbolic execution tool which analyses
Ethereum smart contracts to detect bugs, in real Ethereum network.

20 / 74

Introduction

• Comparison (𝑂𝑦𝑒𝑛𝑡𝑒 vs 𝑍𝑒𝑢𝑠)

• Kalra, Sukrit, et al. "Zeus: Analyzing safety of smart contracts." 25th
Annual Network and Distributed System Security Symposium, NDSS.
2018.

Transaction Order Dependence

Block / Transaction state dependence

Unchecked send

Reentrancy

Failed send

Integer overflow / underflow

8,890 / 19,366
(45.9%, 1,758 unique contract)

21,281 / 22,493
(94.6%, 1,524 unique contract)

21 / 74

Security bugs in Ethereum

22 / 74

Security bugs in Ethereum

Attack #1. Transaction-Ordering Dependence (TOD)

• Did you remember the transaction ordering?

• OK, Let’s think about the following situation.

𝑇𝑎
≈ 𝑀𝑎𝑥
≈ 𝑀𝑖𝑛

𝑇𝑏
𝑠𝑢𝑖𝑡

If 𝑠𝑎𝑚𝑒 𝐺𝑎𝑠 𝑃𝑟𝑖𝑐𝑒, Gas Limit comparison

𝑇𝑎
1 ∗ 109

𝑇𝑏
2 ∗ 109

If 𝑠𝑎𝑚𝑒 𝐺𝑎𝑠 𝐿𝑖𝑚𝑖𝑡, Gas Price comparison

Alice Bob

(???) Who’s first?

23 / 74

Security bugs in Ethereum

Attack #1. TOD

• Let's take a specific example.

• In this contract, you can get a reward
when you send the right answer.

24 / 74

Security bugs in Ethereum

Attack #1. TOD - Example

Alice
𝐺𝑎𝑠𝑝𝑟𝑖𝑐𝑒 = 1 ∗ 109

I found
the answer!

It is 96

25 / 74

Security bugs in Ethereum

Attack #1. TOD - Example

Alice

I found
the answer!

It is 96

𝐺𝑎𝑠𝑝𝑟𝑖𝑐𝑒 = 1 ∗ 109

Bob

<Blockchain info>
Alice: I found the answer!

It is 96
(1) Read ASAP

2 𝐺𝑎𝑠𝑝𝑟𝑖𝑐𝑒 = 𝟐 ∗ 109

96

Bob is first.

26 / 74

<Blockchain info>
Alice: I found the answer!

It is 96

Security bugs in Ethereum

Attack #1. TOD - Example

Alice

I found
the answer!

It is 96

𝐺𝑎𝑠𝑝𝑟𝑖𝑐𝑒 = 1 ∗ 109

Bob

96

Bob is first.Bob or Bob’s
partner

(1) Read ASAP

2 𝐺𝑎𝑠𝑝𝑟𝑖𝑐𝑒 = 𝟏 ∗ 109

27 / 74

Security bugs in Ethereum

Attack #2. Timestamp Dependence

• The timestamp of the
block is used to create
a random value.

28 / 74

Security bugs in Ethereum

Attack #2. Timestamp Dependence

• The timestamp of the
block is used to create
a random value.

• local time manipulation
with pre-computed value
(Randomness)

Bob or Bob’s
partner

block.timestamp <= now + 900 &&
block.timestamp >= parent.timestamp

29 / 74

Security bugs in Ethereum

Attack #2. Timestamp Dependence

• The timestamp of the
block is used to create
a random value.

• local time manipulation
with pre-computed value
(Randomness)

*Info ref. Wood, Gavin. "ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER BYZANTIUM VERSION." Internet: https://github. com/ethereum/yellowpaper,[Apr. 17, 2019] (2019).
*geth is the the command line interface for running a full ethereum node implemented in Go (https://github.com/ethereum/go-Ethereum)

block.timestamp <= now + 900 &&
block.timestamp >= parent.timestamp

Allow only 15 seconds. (geth code: consensys.go)

There is no time limit.

ref. from outdated whitepaper 
cuz of 3 years ago paper 

Bob or Bob’s
partner

30 / 74

Security bugs in Ethereum

Attack #2. Timestamp Dependence

• The timestamp of the
block is used to create
a random value.

• local time manipulation
with pre-computed value
(Randomness)

*Info ref. Wood, Gavin. "ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER BYZANTIUM VERSION." Internet: https://github. com/ethereum/yellowpaper,[Apr. 17, 2019] (2019).
*geth is the the command line interface for running a full ethereum node implemented in Go (https://github.com/ethereum/go-Ethereum)

block.timestamp <= now + 900 &&
block.timestamp >= parent.timestamp

Allow only 15 seconds. (parity code: verification.rs)

Bob or Bob’s
partner

There is no time limit.

ref. from outdated whitepaper 
cuz of 3 years ago paper 

31 / 74

Security bugs in Ethereum

Attack #3. Mishandled Exception

32 / 74

Security bugs in Ethereum

Attack #3. Mishandled Exception

• send reward ->
assign the new king

$

33 / 74

Security bugs in Ethereum

Attack #3. Mishandled Exception

• send reward ->
assign the new king

• 27.9% of the contract do not
check the return values after
calling other contracts via
send.

Revert
(out of gas)

34 / 74

Security bugs in Ethereum

Attack #4. Reentrancy Vulnerability

• In Ethereum, when a contract calls another, the current execution
waits for the call to finish.

*code from https://hackernoon.com/smart-contract-security-part-1-reentrancy-attacks-ddb3b2429302
35 / 74

Security bugs in Ethereum

Attack #4. Reentrancy Vulnerability

• The DAO Hack

• Most well-known smart contract vulnerability.

• The hacker stole over 3,600,000 ETH / 60,000,000 USD

*code from (TheDAO) https://etherscan.io/address/0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code

splitDAO(proposal, address)

withdrawRewardFor(msg.sender)

rewardAccount.payout(_account, reward)

balances[msg.sender] = 0;

<Attacker>
DAO.splitDao(proposal, address)

36 / 74

Towards a better design

37 / 74

Towards a better design

• Operational Semantics of Ethereum

Blocks

Transactions

38 / 74

Towards a better design

• Transaction Execution

$

Alice Bob

𝜎 𝜎′′

𝜎𝜎′′
39 / 74

Towards a better design

• Recommendations for Better Semantics - Overview

• Guard transactions

• 𝑔 : guard condition

• TX-Stale: current state 𝜎 needs to satisfy 𝑔 for the execution of 𝑇

40 / 74

Towards a better design

• Recommendations for Better Semantics - TOD

• Guard transactions

• 𝑔 : guard condition

• TX-Stale: current state 𝜎 needs to satisfy 𝑔 for the execution of 𝑇

Owner’s 𝑇b updatePrice()
Higher price

User′s 𝑇a buy()

Vulnerable!

(1)

(2)

Block #1

41 / 74

Towards a better design

• Recommendations for Better Semantics - TOD

• Guard transactions

• 𝑔 : guard condition

• TX-Stale: current state 𝜎 needs to satisfy 𝑔 for the execution of 𝑇

Owner’s 𝑇b updatePrice()
Higher price

User′s 𝑇a buy()
𝑔 ≡ (Value = Price)

Safety

(1)

(2)

Block #1

42 / 74

Towards a better design

• Recommendations for Better Semantics – Timestamp Dependence

• Deterministic Timestamp

• block timestamp is essentially a redundant feature

• a new block is created
approximately every
12 seconds in Ethereum

• block.timestamp (X)

• block number (O)

43 / 74

Towards a better design

• Recommendations for Better Semantics – Mishandled exception

• Better exception handling

• “Make & Use Try-catch”

• Info: catching exceptions is not
yet possible in Solidity.

*Code from https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/try...catch
*info from https://solidity.readthedocs.io/en/v0.5.7/control-structures.html#error-handling-assert-require-revert-and-exceptions 44 / 74

Towards a better design

• Recommendations for Better Semantics – Mishandled exception

• Error Handling.

*info from https://solidity.readthedocs.io/en/v0.5.7/units-and-global-variables.html#error-handling
45 / 74

Towards a better design

• Recommendations for Better Semantics

• Reentrancy Vulnerability (Not covered in this paper.)

• Call after update.

*code from https://hackernoon.com/smart-contract-security-part-1-reentrancy-attacks-ddb3b2429302
46 / 74

The 𝑂𝑦𝑒𝑛𝑡𝑒 Tool
Compare with teEther
Krupp, Johannes, and Christian Rossow. "teether: Gnawing at ethereum to automatically exploit smart
contracts." 27th USENIX Security Symposium. 2018.

47 / 74

The 𝑂𝑦𝑒𝑛𝑡𝑒 Tool

• How to solve the problem in smart contract?
• 𝑂𝑦𝑒𝑛𝑡𝑒 : An analysis tool for smart contract based

upon symbolic execution
• developers to write better contracts
• users to avoid invoking problematic contracts

• y = λ, x = χ
• (𝑧 ≠ 1000) : ((χ * 2) ≠ 1000)
• (𝑧 = 1000, 𝑦 ≤ 𝑧) : (((χ * 2) = 1000) && λ ≤ (χ * 2))
• (𝑧 = 1000, 𝑦 > 𝑧) : (((χ * 2) = 1000) && λ > (χ * 2))
• Symbolically executing all feasible program paths

does not scale to large programs.
(But, targets of 𝑂𝑦𝑒𝑛𝑡𝑒 are smart contracts)

*Code from https://www.lazenca.net/pages/viewpage.action?pageId=6324534
48 / 74

The 𝑂𝑦𝑒𝑛𝑡𝑒 Tool

• Z3

• An efficient SMT Solver

49 / 74

The 𝑂𝑦𝑒𝑛𝑡𝑒 Tool

• 𝑡𝑒𝐸𝑡ℎ𝑒𝑟

• The attacker of this paper is a weak attacker

• The goal is to find a contract in which the
attacker can call the money-related instruction

• Ex. SELFDESTRUCT(address): sends all of the
contract’s current balance to address

• Make Exploit automatically.

50 / 74

The 𝑂𝑦𝑒𝑛𝑡𝑒 Tool

• 𝑂𝑦𝑒𝑛𝑡𝑒 Architecture

• Overview

51 / 74

The 𝑂𝑦𝑒𝑛𝑡𝑒 Tool

• 𝑡𝑒𝐸𝑡ℎ𝑒𝑟 Architecture

• Overview

*Krupp, Johannes, and Christian Rossow. "teether: Gnawing at ethereum to automatically exploit smart contracts." 27th {USENIX} Security Symposium ({USENIX} Security 18). 2018.
52 / 74

The 𝑂𝑦𝑒𝑛𝑡𝑒 Tool

• 𝑂𝑦𝑒𝑛𝑡𝑒 Architecture

• CFG Recovery

• 64 EVM Instructions.

• Block => Node

• Jump => Edge

FT

FT

TF

F T

6060604052123123123528.....

*Image from “Making Smart Contracts Smarter: Oyente – Loi Luu (slide pptx)”, Devcon 2016
53 / 74

The 𝑂𝑦𝑒𝑛𝑡𝑒 Tool

• 𝑡𝑒𝐸𝑡ℎ𝑒𝑟 Architecture

• CFG Recovery

JUMPDEST

JUMPI

JUMP unconditional jump

conditional jump

Markers jump target

3460576060565b606060565b
50565b00151600…

*Image from “teether: Gnawing at ethereum to automatically exploit smart contracts (slide pptx)”, Johannes.krupp@cispa, USENIX 2018
54 / 74

The 𝑂𝑦𝑒𝑛𝑡𝑒 Tool

• 𝑂𝑦𝑒𝑛𝑡𝑒 Architecture

• Execution Trace (Explorer)

• DFS (Depth Frist Search)

FT

FT

TF

F T

6060604052123123123528.....

T

T

F

T

𝑥

𝐶1: 𝑥 > 0

𝐶2: 𝑧 <15
𝐶3:z<8
𝑧 = 𝑥 + 2;

𝐶1 ⋀ 𝐶2 ⋀ 𝐶3⋀(z = x + 2)

*Image from “Making Smart Contracts Smarter: Oyente – Loi Luu (slide pptx)”, Devcon 2016
55 / 74

The 𝑂𝑦𝑒𝑛𝑡𝑒 Tool

• 𝑂𝑦𝑒𝑛𝑡𝑒 Architecture
• Theorem Prover

• Each trace is associated
with a path constraint and
auxiliary data that the
analyses in later phase
require.

• Z3 in particular, helps us
eliminate provably infeasible
traces from consideration.

FT

FT

TF

F T

6060604052123123123528.....

T

T

F

T

𝑥

𝐶1: 𝑥 > 0

𝐶2: 𝑧 <15
𝐶3:z<8
𝑧 = 𝑥 + 2;

𝐶1 ⋀ 𝐶2 ⋀ 𝐶3⋀(z = x + 2)

𝑍3

FalseTrue
𝑥 = 10

*Image from “Making Smart Contracts Smarter: Oyente – Loi Luu (slide pptx)”, Devcon 2016
56 / 74

The 𝑂𝑦𝑒𝑛𝑡𝑒 Tool

• 𝑡𝑒𝐸𝑡ℎ𝑒𝑟 Architecture

• Path generation

• Wait!

• There are some
challenges.

3460576060565b606060565b
50565b00151600…

𝑍3

*Image from “teether: Gnawing at ethereum to automatically exploit smart contracts (slide pptx)”, Johannes.krupp@cispa, USENIX 2018

CRITICAL = ['CALL', 'DELEGATECALL', 'CALLCODE',
'SELFDESTRUCT']

57 / 74

The 𝑂𝑦𝑒𝑛𝑡𝑒 Tool

• 𝑡𝑒𝐸𝑡ℎ𝑒𝑟 Architecture

• Path generation – Challenge #1. Contract state

*Image from “teether: Gnawing at ethereum to automatically exploit smart contracts (slide pptx)”, Johannes.krupp@cispa, USENIX 2018
58 / 74

The 𝑂𝑦𝑒𝑛𝑡𝑒 Tool

• 𝑡𝑒𝐸𝑡ℎ𝑒𝑟 Architecture

• Path generation – Challenge #1. Contract state

(1) mark SSTORE instructions

(2) compute backward slices of argument(s)

(3) generate path through a slice

(4) execute path symbolically (collect path constraints)

• collect storage reads R & write W

• combine states changing paths + 1 critical path

*Image from “teether: Gnawing at ethereum to automatically exploit smart contracts (slide pptx)”, Johannes.krupp@cispa, USENIX 2018
59 / 74

The 𝑂𝑦𝑒𝑛𝑡𝑒 Tool

• 𝑡𝑒𝐸𝑡ℎ𝑒𝑟 Architecture

• Path generation – Challenge #2. Hash Functions

• EVM has SHA hash instructions.

• Hash is a one-way function.

• If the hash function is in the constraints, it is impossible to solve.

*Image from “teether: Gnawing at ethereum to automatically exploit smart contracts (slide pptx)”, Johannes.krupp@cispa, USENIX 2018
60 / 74

The 𝑂𝑦𝑒𝑛𝑡𝑒 Tool

• 𝑡𝑒𝐸𝑡ℎ𝑒𝑟 Architecture

• Path generation – Challenge #2. Hash Functions

(1) Remove dependent constraints

(2) Solve reduced set

(3) Compute hash values

(4) Replace dependent constraints

(5) Repeat.

*Image from “teether: Gnawing at ethereum to automatically exploit smart contracts (slide pptx)”, Johannes.krupp@cispa, USENIX 2018
61 / 74

The 𝑂𝑦𝑒𝑛𝑡𝑒 Tool

• 𝑂𝑦𝑒𝑛𝑡𝑒 Architecture

• Core analysis – Transaction Ordering Dependence

• [Remind]

• Explorer: Returns a set of traces and the corresponding Ether
flow for each trace.

*Image from “Making Smart Contracts Smarter: Oyente – Loi Luu (slide pptx)”, Devcon 2016
62 / 74

The 𝑂𝑦𝑒𝑛𝑡𝑒 Tool

• 𝑂𝑦𝑒𝑛𝑡𝑒 Architecture

• if two different traces have different Ether flows => Vulnerable!

1. Trace & Ether flow.

2. Trace & Ether flow.

FT

FT

TF

F T

*Image from “Making Smart Contracts Smarter: Oyente – Loi Luu (slide pptx)”, Devcon 2016
63 / 74

The 𝑂𝑦𝑒𝑛𝑡𝑒 Tool

• 𝑂𝑦𝑒𝑛𝑡𝑒 Architecture

• Core analysis – Timestamp Dependency

• Symbolize block.timestamp on Explorer. (Ex, 𝜃)

• if this symbolic variable is included.
A contract is flagged as timestamp-dependent vulnerability.

*Image from “Making Smart Contracts Smarter: Oyente – Loi Luu (slide pptx)”, Devcon 2016

FT

FT

TF

F T

𝜃

64 / 74

The 𝑂𝑦𝑒𝑛𝑡𝑒 Tool

• 𝑂𝑦𝑒𝑛𝑡𝑒 Architecture

• Core analysis – Mishandled Exception (send)

Caller

Callee

CALL Contract
…
…

…

EVM Code

…
…

…
…

…

Stack

…

65 / 74

The 𝑂𝑦𝑒𝑛𝑡𝑒 Tool

• 𝑂𝑦𝑒𝑛𝑡𝑒 Architecture

• Core analysis – Mishandled Exception (send)

• Safety

Caller

Callee

CALL Contract
ISZERO

…

…

EVM Code

…
…

…
…

…

Stack

0

Failed!

66 / 74

The 𝑂𝑦𝑒𝑛𝑡𝑒 Tool

• 𝑂𝑦𝑒𝑛𝑡𝑒 Architecture

• Core analysis – Mishandled Exception (send)

• Vulnerable

Caller

Callee

CALL Contract
…
…

…

EVM Code

…
…

…
…

…

Stack

0

Failed!

67 / 74

The 𝑂𝑦𝑒𝑛𝑡𝑒 Tool

• 𝑂𝑦𝑒𝑛𝑡𝑒 Architecture

• Core analysis – Reentrancy Detection

• At each CALL that is encountered, they obtain the path condition for
the execution before the CALL is executed.

• check if such condition with updated variables (e.g., storage values)
still holds (i.e., if the call can be executed again)

*Image from “Making Smart Contracts Smarter: Oyente – Loi Luu (slide pptx)”, Devcon 2016
68 / 74

The 𝑂𝑦𝑒𝑛𝑡𝑒 Tool

• 𝑂𝑦𝑒𝑛𝑡𝑒 Architecture

• Core analysis – Reentrancy Detection

splitDAO(proposal, address)

withdrawRewardFor(msg.sender)

rewardAccount.payout(_account, reward)

balances[msg.sender] = 0;

Vulnerable

FT

FT

TF

F T

*Image from “Making Smart Contracts Smarter: Oyente – Loi Luu (slide pptx)”, Devcon 2016
69 / 74

Conclusion

70 / 74

Conclusion

• 19,336 Smart contracts (Mainnet)

• Open-source! (𝑂𝑦𝑒𝑛𝑡𝑒)

• but for ethical reasons we do not conduct our attack confirmation on
contracts

• False-Positive: Validator is far from being complete

Detected
TheDAO bug

71 / 74

Conclusion

• Contribution

• Introducing several new classes of security bugs in the Ethereum
Smart Contract

• Formalize the “lightweight” semantics of Ethereum smart contract
and propose recommendations as solutions for the documented
bugs.

• make & run 𝑂𝑦𝑒𝑛𝑡𝑒, a symbolic execution tool which analyses
Ethereum smart contracts to detect bugs, in real Ethereum network.

72 / 74

Future Works

73 / 74

Future Works

• Design defects due to component combination.

Smart
contract

User

Node

General

Language

Logic

Consensus

Wallet
74 / 74

END.
Thanks.

Appendix

Appendix - Towards a better design

• Operational Semantics of Ethereum - Denotation

← assignment

• an arbitrary element (The value that the program accesses during
execution.)

⇓ big-step evaluation

small-step evaluation

σ state (address and account state mapping)

Γ Transaction flow

<BC, σ> Ethereum state as a pair <Blockchain, state>

But, do not model miner rewards. (for simplicity)

Appendix - Towards a better design

• Operational Semantics of Ethereum

Only one “elected leader” executes the 𝑃𝑟𝑜𝑝𝑜𝑠𝑒 rule at time.

Appendix - Towards a better design

• Operational Semantics of Ethereum

Other miners use the 𝐴𝑐𝑐𝑒𝑝𝑡 rule to “repeat” the transitions after the
leader broadcasts block B (Timestamp-dependence)

Appendix - Towards a better design

• Operational Semantics of Ethereum

some inevitable order among 𝑇𝑖 (Transaction-ordering dependence)

Appendix - Towards a better design

• Transaction Execution – Denotation (Cont’d)

• A transaction can activate the code execution of a contract.

• execution can access to three types of space in which to store data

• s : LIFO Stack

• l : auxiliary memory (expandable array, input, output)

• 𝑠𝑡𝑟 : long-term storage, part of σ[id]

• 𝑝𝑐 : Program counter

• 𝑀 : the contract code array

Appendix - Towards a better design

• Transaction Execution – Denotation

• 𝐴 : Call stack of activation records

• 𝜖 : empty call stack, < 𝜖 >𝑒𝑥𝑐 : exception thrown

• 𝜇 =<𝐴, 𝜎>: Virtual machine’s execution state

EVM Code on Blockchain

Program Counter

Gas

Stack
256 bits * 1024

Memory
linear memory

Storage
key-value store (256 – 256 bits)Persistent

Volatile
𝑠 𝑙

𝑠𝑡𝑟

𝑝𝑐

𝑀

Appendix - Towards a better design

• Transaction Execution

• 𝑖𝑑 : the identifier of the to-be-invoked contract

• 𝑣 ∶ the value to be deposited to the contract

• 𝑙 : an data array capturing the values of input parameters

• Transaction =<𝑖𝑑, 𝑣, 𝑙>

• features

• Atomicity

• Consistency

Appendix - Towards a better design

• Transaction Execution

• 𝐸𝑡ℎ𝑒𝑟𝐿𝑖𝑡𝑒

• 𝑠𝑡 : start address

• 𝑠𝑧 : size

• 𝑣 ∈ 𝑣𝑎𝑙𝑢𝑒𝑠

Example

𝜇 𝜇′ per 𝑀[𝑃𝐶]

References

• http://www.ethdocs.org/

• https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-krupp.pdf

• https://www.usenix.org/sites/default/files/conference/protected-files/security18_slides_krupp.pdf

• https://solidity.readthedocs.io/en/latest/

• https://takenobu-hs.github.io/downloads/ethereum_evm_illustrated.pdf

• https://consensys.github.io/smart-contract-best-practices/recommendations/

• https://hackernoon.com/smart-contract-security-part-1-reentrancy-attacks-ddb3b2429302

• https://www.lazenca.net/pages/viewpage.action?pageId=6324534

• https://en.wikipedia.org/wiki/Symbolic_execution#Path_explosion

• https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/try...catch

• https://solidity.readthedocs.io/en/v0.5.7/control-structures.html#error-handling-assert-require-revert-and-exceptions

• https://solidity.readthedocs.io/en/v0.5.7/units-and-global-variables.html#error-handling

• https://users.encs.concordia.ca/~clark/papers/2017_cacm.pdf

• http://sigpl.or.kr/school/2018s/slides/0820-02-JonghyupLee.pdf

http://www.ethdocs.org/
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-krupp.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/security18_slides_krupp.pdf
https://solidity.readthedocs.io/en/latest/
https://takenobu-hs.github.io/downloads/ethereum_evm_illustrated.pdf
https://consensys.github.io/smart-contract-best-practices/recommendations/
https://hackernoon.com/smart-contract-security-part-1-reentrancy-attacks-ddb3b2429302
https://www.lazenca.net/pages/viewpage.action?pageId=6324534
https://en.wikipedia.org/wiki/Symbolic_execution#Path_explosion
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/try...catch
https://solidity.readthedocs.io/en/v0.5.7/control-structures.html#error-handling-assert-require-revert-and-exceptions
https://solidity.readthedocs.io/en/v0.5.7/units-and-global-variables.html#error-handling
https://users.encs.concordia.ca/~clark/papers/2017_cacm.pdf
http://sigpl.or.kr/school/2018s/slides/0820-02-JonghyupLee.pdf

